HETEROSIS STUDIES FOR YIELD COMPONENT TRAITS AND QUALITY IN SPRING WHEAT (TRITICUM AESTIVUM L.)

DINESH KUMAR* AND S. A. KERKHI
Department of Genetics and Plant Breeding, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut - 250 110, INDIA e-mail: dkgoswami98@gmail.com

KEYWORDS

Heterobeltiosis
Transgressive segregants
Diallel crosses
Quality traits
Wheat
Received on :
12.08.2014

Accepted on :

10.12.2014
*Corresponding author

Abstract

A study was conducted to estimate the extent of heterosis for yield and some quality in the experiment was planted in a RCBD with three replication and $45 \mathrm{~F}_{1}$ crosses along with 10 diverse genotypes by diallel mating design in spring wheat. The estimation of high degree of heterosis in certain cross combination namely, DBW $58 \times$ DBW 17 followed by MP $1236 \times$ PBW 550, PBW $550 \times$ PBW 590, PBW $550 \times$ HD 2687 , WH $1094 \times$ PBW 590, MP $1236 \times$ WH 1094 and PBW $590 \times$ WH 711 which may be exploited for developing hybrids with better yield and quality in spring wheat. Out of these 11 crosses, the cross PBW $550 \times$ PBW 373 and MP $1236 \times$ PBW 373 which showed significant sca effect with good per se performance for grain yield may be used in cross breeding programme and might be expected to give transgressive segregants in F_{2} as these two crosses are having the parents with low \times high and high \times high gca effect.

INTRODUCTION

Wheat is one of the most important cereal crops of the world. It is the leading grain quality and yield of world. Gluten which is a major part of wheat protein (about 75% of the total protein present in the wheat grain), have a unique quality for making the processed food puffly, with increase in perforated volume. Wheat constitute major staple food crop of rapidly increasing population of India and plays a most important role in food security and economic stability of the country. Because of its versatility in adaptation and utility of various ways, wheat is grown in more 44 countries at global level.
Heterotic studies can also be used for getting information about the increase or decrease of $F_{1} s$ over better parent (heterobeltiosis). However, selection of superior parents represent the major step in development of high yielding new cultivars and the identification of superior hybrid combinations is another fundamental issue in hybrid breeding. The studies of heterosis in wheat have also been reported by by Singh et al. (2004), Chowdhry et al. (2005), Kumar and Raghavaiah (2005), Muhammad et al. (2010), Gowda et al. (2010), Kamaluddin Angrej Ali (2011), Karnwal et al. (2011), Singh and Sharma (2012), Devi et al. (2013), Singh et al. (2013) and Singh et al. (2014). The major objective of the present study was to estimate the heterosis over better parents (heterobeltiosis) for fourteen characters is a half diallel mating design involving ten diverse genotypes of spring wheat. The studies were conducted for identify these the best cross combination may be exploited through heterosis breeding
programme for improvement in yield component and quality traits.

MATERIALS AND METHODS

The study material comprising ten wheat genotypes (MP 1236, PBW 550, WH 1094, PBW 590, PBW 373, RAJ 3765, DBW 58, HD 2687, DBW 17 and WH 711) was sown at Crop Research Centre, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut during rabi 2010-2011 for attempting of crossing programme in a diallel fashion (10 $\times 10$).
Following season (rabi 2011-2012) experimental material comprising total 55 genotypes (10 parental line and $45 \mathrm{~F}_{1}$'s) was planted in a Randomized Block Design (RBD) having three replications. Each of the parental lines and crosses were sown by hand dibbling method in two rows plot (3 m length keeping 25 cm spacing between row and 10 cm between plants). All the recommended agronomic practices were followed to raise good crop and for proper expression of material. Observations were recorded on 10 randomly selected competitive plants in each of three replications fifteen different characters namely days to 50% flowering, days to maturity, number of productive tillers per plant, plant height, flag leaf area, spike length, spikelets per spike, grains per spike, 1000-grain weight (g), biological yield per plant (g), grain yield per plant (g), harvest index, ash content (\%), gluten content (\%) and Phenol color reaction (grading). Observations were recorded on the fifteen characters from each replication and mean data on these traits
except phenol colour reaction were subjected to statistical and biometrical analysis by commonly used statistical software (INDOSTATE 7.5). The data were first subjected to the usual analysis followed by a RCBD (Panse and Sukhatme, 1984). The heterosis over better parents show the heterobeltiosis was estimated over the check parent viz., PBW 373. The mean values of parents and hybrids were used for estimating heterosis over their respective better parents for above characters.
The magnitude of heterosis over better parents was estimated by commonly used statistical software (INDOSTATE 7.5) and calculated with the help of the formulae given below:

$$
\text { Heterosis over better parent }(\%)=\frac{\bar{F}_{1}-\overline{B P}^{-}}{\bar{B} \bar{P}} \times 100
$$

where,
$B P=$ the value of the better parent.

Test of significance

Significance of heterosis better parents was tested by the method suggested by Panse and Sukhatme (1961).
S.E. of difference between any two values (BP) $=\sqrt{ } 2 \mathrm{VE} / \mathrm{r}$ where,
VE = error variance
$r \quad=$ number of replications
C.D. $=$ S.E. $x t$

RESULTS AND DISCUSSION

In the present investigation, the degree of heterosis was measured as mean superiority of F_{1} s over their respective better parents. Heterosis may be high or low depending upon the mean of the parent (P) in question. Obviously, there may be possibility of getting a cross with high per se performance but with low heterosis, in case the parental performance is also high. On the contrary, there can be a cross with poor per se performance but high \% of heterosis. It means that the choice of best cross combination on the basis of high heterosis would not necessarily be one which would give the highest per se performance also. The per se performance being the realized value, and the heterotic response being an estimate, the former should be given preference with high percentage of heterosis while making selection of cross combination.
While analyzing the crosses for manifestation of hybrid vigour over better parent (Table 1), none of the crosses exhibited vigour for all the traits in the present investigation.
Manifestation of heterosis was found in both positive and negative direction for days to 50% flowering. The heterosis over better parent ranged from -6.52 (PBW $550 \times \mathrm{WH}$ 1094) to 0.73 (PBW $590 \times$ RAJ 3765) percent. Out of 45 crosses, three crosses showed significant and high heterosis over better parent in negative direction (desirable) for early flowering. Crosses with highly significant and negative value were, PBW $550 \times$ WH 1094 (-6.52) followed by MP $1236 \times$ WH 711 (5.52) and PBW $550 \times$ PBW 590 (-5.09). Similar results on the importance of negative heterosis for days to 50% flowering
has been highlighted by Ashutosh et al. (2011) and Singh et al. (2013).
In days to maturity magnitude of heterosis ranged from -2.63 (PBW $550 \times$ HD 2687) to 0.24 (MP $1236 \times$ DBW 58) for early maturity. This result showed that a neglible \% of heterosis for this character was seen in present crosses. However none of the cross showed significant negative value against the check parent PBW 373. Negative estimates of heterosis for maturity were earlier reported by Devi et al. (2013) and Singh et al. (2013).

Higher numbers of tillers are required for getting high yields. At present almost all high yielding varieties have profuse tillering. For this character heterobeltiosis ranged from 11.54 (WH $1094 \times$ PBW 590) to 40.06 (DBW $58 \times$ HD 2687). Out of 45 crosses, 9 hybrids showed significant positive heterosis over better parent (more than 15%). Similar positive significant and heterosis for number of tillers per plant has been reported by Muhammad et al. (2010) and Singh et al. (2014).
A range of for plant height was -17.71 (WH $1094 \times$ PBW 590) to -2.43 (PBW $373 \times$ RAJ 3765). The highest and significant negative value was observed for crosses viz.; WH $1094 \times$ PBW 590 (-17.71) followed by MP $1236 \times$ PBW 550 (-15.43), MP $1236 \times$ WH 711 (-13.41), PBW $550 \times$ WH 711 (-13.37) and $1236 \times$ DBW 17 (-13.34), which showed more than 13% heterosis. The present study in agreement with AbdelNour (2005) and Singh et al. (2013)
Heterobeltiosis for flag leaf area was found in the range of 19.37 (PBW $373 \times$ DBW 58) to 23.35 (PBW $550 \times$ WH 711). Out of 45 crosses, five crosses showed significant heterosis in positive direction. The maximum value of heterosis was recorded in the cross PBW $550 \times$ WH 711 (23.35) followed by PBW $550 \times$ DBW 17 (22.33), DBW $17 \times$ WH 711 (20.66), WH $1094 \times$ WH 711 (14.17) and PBW $550 \times$ HD 2687 (13.87). Such types of findings were also reported by Chowdhry et al. (2005) and Ghulam et al. (2006).
The magnitude of heterosis for spike length ranged from 11.47 (WH $1094 \times \mathrm{WH} 711$) to 11.91 (MP $1236 \times$ PBW 550). A total of 20 crosses showed positive heterosis. The maximum positive heterosis was observed for crosses viz.; MP $1236 \times$ PBW 550 (11.91) and PBW $550 \times$ DBW 58 (8.04). Positive heterosis for spike length has been reported earlier by Chowdhry et al. (2005), Ghulam et al. (2006) and Muhammad et al. (2010).
Heterosis over better parent for spikelets per spike ranged from -5.67 (MP $1236 \times$ RAJ 3765) to 10.55 (PBW $590 \times$ PBW 373). Out of 45 cross combinations, 10 crosses were found desirable with significant and positive heterosis over better parent. Cross combination PBW $590 \times$ PBW 373 had shown maximum heterobeltiosis of 10.55 percent. Other meritorious combinations with high heterosis were PBW 373 \times RAJ 3765 (10.00), PBW $373 \times$ DBW 58 (7.31) and PBW $590 \times$ RAJ 3765 (7.09). Positive heterosis for number of spikelets per spike has been reported by Muhammad et al. (2010) and Gite et al. (2014).

Heterobeltiosis for grains per spike, ranged from-22.75 (PBW $550 \times$ DBW 17) to 11.38 (PBW $373 \times$ RAJ 3765). Five crosses showed significant and positive heterosis. The cross PBW 373 \times RAJ 3765 recorded highest value (11.38), followed by HD

$2687 \times$ WH 711 (10.61), PBW $373 \times$ DBW 17 (10.11), PBW $373 \times$ HD 2687 (8.28), PBW $373 \times$ WH 711 (6.48). However, grains per spike are one of the important component characters of yield. Thus, positive and significant heterosis for this character is important as this traits is contributing to yield in a considerable way. Similar studies were reported by JahanzebFarooq and Ihsan-Khaliq (2004).

A negligible amount of positive heterobeltiosis was observed for 1000-grain weight. Only two crosses e \times hibited heterosis in positive derection namely RAJ $3765 \times$ WH 711 (2.62) and PBW $590 \times$ RAJ 3765 (0.82). Heterosis for 1000 grain weight was earlier reported by Hassan and Saad (1996).
Heterobeltiosis value for biological yield/ plant ranged from 13.87 (RAJ $3765 \times$ WH 711) to 26.82 (DBW $58 \times$ DBW 17). The highest significant positive heterosis was displayed by five hybrids. The hybrid DBW $58 \times$ DBW 17 showed highest degree of significant positive heterosis (26.82), followed by MP $1236 \times$ PBW 550 (14.05), RAJ $3765 \times$ DBW 58 (12.86), MP $1236 \times$ WH 1094 (12.25) and WH $1094 \times$ PBW 590 (12.08), which showed heterosis (\%) more than 10%. Similar results for biological yield were reported by Desale, et al. (2013).

The range of heterosis over better parent for grain yield per plant varied from -21.08 (PBW $373 \times$ DBW 17) to 34.19 (DBW $58 \times$ DBW 17). While selecting the plants, grain yield received maximum attention of plant breeder. Therefore, positive heterosis for grain yield is desirable. In case of grain yield per plant, 20 crosses showed significant and positive over better parent more than 11%. Similar results on positive heterosis for grain yield per plant has been reported by Muhammad et al. (2010), Kamaluddin Angrej Ali (2011), Karnwal et al. (2011), Singh and Sharma (2012), Singh et al. (2013), Devi et al. (2013), Desale et al. (2013) and Singh et al. (2014).

The magnitude of heterosis for harvest index ranged from 20.45 (PBW $373 \times$ DBW 58) to 19.96 (MP $1236 \times$ HD 2687). Significant positive heterosis was demonstrated by five hybrids, i.e. MP $1236 \times$ HD 2687 (19.96), MP $1236 \times$ WH 711 (18.73), MP $1236 \times$ DBW 17 (18.66), PBW $590 \times$ WH 711 (17.95) and PBW $550 \times$ PBW 590 (13.86). These crosses could be of greater value if exploited in breeding programme.
Positive heterosis for harvest index were reported by Singh et al. (2013).

The expression of heterosis over better parent for ash content ranged from -21.98 (MP $1236 \times$ RAJ 3765) to 32.90 (PBW $550 \times$ PBW 590). 12 crosses showed positive heterosis (Table 4). However, 7 crosses showed significant positive heterosis for this traits.

The magnitude of heterosis for gluten content ranged from $8.70(\mathrm{MP} 1236 \times \mathrm{WH} 711)$ to $7.38(\mathrm{WH} 1094 \times$ DBW 17). Total numbers of crosses with positive value were 11 out of which 6 were having significant positive heterosis (Table 3). Similar results for gluten content were reported by Krystkowiak et al. (2009), Singh and Sharma (2012), Gite et al. (2014) and Singh et al. (2014).
Data recorded on this trait was not statistically analyzed. Parents and $F_{1} s$ were categorized on the basis of colour observed on grains after phenol reaction. The colour on the
Table 1: Cont.......

Crosses	Daysto 50\% Flowering BP	Daysto maturity BP	Number of productive tillers/ Plant BP	Plant height BP	Flag leaf area BP	Spike length BP	Spikeles/ spike BP	Grains/ spike BP	$\begin{aligned} & 1000 \\ & \text { grain } \\ & \text { weight } \\ & \text { BP } \end{aligned}$	Biological yield/ plant BP	Grain yield plant BP	Harvest index BP	Ash content BP	Gluten content BP
WH $1094 \times$ WH 711	-3.79**	-0.94	10.30	-1.36	14.17**	-11.47**	0.17	-15.55**	-5.03	-8.65*	-3.76	5.24	9.30	0.07
PBW $590 \times$ PBW 373	-0.73	-0.24	13.52*	-6.08**	-0.01	-1.17	10.55**	-6.55*	-13.90**	4.58	-6.24	-10.29*	3.47	2.06
PBW $590 \times$ RAJ 3765	0.73	0.00	-4.63	-4.31**	-11.41**	-5.16*	7.09**	5.34	0.82	-0.08	-8.56	-9.15*	13.16*	0.15
PBW $590 \times$ DBW 58	-1.42	-0.24	1.42	-4.46**	-5.16	-5.51*	6.60**	5.15	-10.50*	-0.69	13.87*	4.99	13.08*	6.83**
PBW $590 \times$ HD 2687	-3.13**	0.24	0.71	-0.25	11.54**	-5.68*	-1.50	-6.25*	-7.47	-0.43	13.28*	13.68*	-14.89**	2.59
PBW $590 \times$ DBW 17	-2.09**	-0.47	3.56	-1.97	9.70*	-4.48	-0.51	-3.63	-2.73	-5.07	9.77	10.67*	-3.80	-0. 99
PBW $590 \times$ WH 711	-1.72*	-0.47	3.20	-11.29**	6.42	-6.54**	-1.03	-5.43	-5.36	-2.67	20.70**	17.95**	-7.83	-0.29
PBW $373 \times$ RA 3765	-2.18**	-1.42**	7.05	-2.43*	7.82*	-5.38*	10.00**	11.38**	-12.95**	-0.40	-19.67**	-19.21**	4.99	2.46
PBW $373 \times$ DBW 58	-2.13**	-0.47	7.47	-8.41**	-19.37**	-2.79	7.31**	5.72	-15.28**	-0.46	-20.85**	-20.45**	1.30	1.56
PBW $373 \times$ HD 2687	-4.17**	-1.18*	4.15	-7.76**	-14.79**	-10.56**	2.83*	8.28**	-20.99**	-0.13	-20.14**	-19.90**	7.23	1.89
PBW $373 \times$ DBW 17	-4.53**	-1.89**	9.13	-11.11**	-13.64**	1.59	4.10**	10.11**	-16.45**	-7.10**	-21.08**	-15.04**	-4.56	2.36
PBW $373 \times$ WH 711	-1.72*	-0.70	7.05	-6.57**	5.43	-3.43	3.25*	6.48*	-10.12**	-5.24	-17.20**	-12.61**	3.90	-1.67
RAJ $3765 \times$ DBW 58	-0.71	-0.71	15.52*	-7.26**	-4.79	-7.48**	6.06**	-1.32	-2.46	12.86**	0.46	-11.71**	9.47	1.14
RAJ $3765 \times$ HD 2687	-1.39	-1.18*	11.64*	-4.44**	-8.96**	-0.35	-0.17	4.36	-11.58**	10.17**	-0.46	-10.31*	-9.36	2.30
RAJ $3765 \times$ DBW 17	-2.79**	-0.47	9.48	-9.62**	-7.88*	1.71	2.73*	2.29	-8.20	5.80	-5.81	-11.71**	9.62	0.23
RAJ $3765 \times$ WH 711	-1.72*	-0.70	19.74**	-8.69**	-2.89	3.67	2.05	-0.68	2.62	-13.87**	-20.49**	-8.29	-2.17	1.50
DBW $58 \times$ HD 2687	-2.43**	-0.95	43.06**	-3.84**	-7.57*	-9.70**	-0.17	1.39	-19.63**	9.51*	12.57*	1.79	-11.49*	2.96
DBW $58 \times$ DBW 17	0.35	-1.65**	30.57**	-8.60**	-13.57**	2.62	1.71	1.12	-10.79**	26.82**	34.19**	1.10	-10.51	2.63
DBW $58 \times$ WH 711	0.00	-0.70	12.88*	-7.71**	11.53**	5.61*	2.05	-2.24	-10.34*	-6.21	0.60	3.42	-7.17	-0.93
HD $2687 \times$ DBW 17	-1.04	-1.65**	28.71**	-3.51**	-8.70*	-7.05**	0.33	-5.05	-4.52	4.27	14.43*	9.68	-8.51	3.52
HD $2687 \times$ WH 711	-1.03	0.00	17.17**	-4.80**	-0.52	-0.88	2.50	10.61**	-4.83	7.88*	14.77*	6.41	-5.74	0.68
DBW $17 \times$ WH 711	-0.69	-0.23	10.30	-0.21	20.66**	-0.95	0.85	-2.02	-1.56	-5.27	3.56	8.38	2.17	1.18
S.E.	0.761	0.711	0.505	1.044	1.487	0.235	0.263	1.619	1.743	1.322	0.996	2.403	0.086	0.157

grains after phenol colour reaction were categorized in five groups viz; Black, Dark brown to brown, light brown, slight colour on the edge and no colour. On the basis of different grade the parents and cross-combinations were grouped in different categories. Out of 55 genotypes (10 parental lines and $45 \mathrm{~F}_{1}$ s) 4 parents and 10 crosses were found in black category; one parent and 13 crosses were in Dark brown to brown category; two parents and 14 crosses were in light brown category and slight colour on the edge category these were three parents and eight crosses namely MP1236, PBW373 and RAJ3765 (parents) and crosses viz; MP1236 \times PBW373, MP1236 \times RAJ3765, PBW550 \times PBW373, PBW550 \times RAJ3765, PBW550 \times HD2687, WH1094 \times PBW373, WH1094 \times RAJ3765 and PBW373 \times RAJ3765 which showed that the 3 parents and 8 crosses might be suitable for chapatti quality which in cross breeding programme. Similar studies were reported by Abrol and Uprety, (1970).
Out of 45 cross combinations, 20 crosses showed significant and positive heterosis over better parents with a range of heterosis (\%) from 11.55 to 34.19 for grain yield (Table 2). Among these crosses the cross viz; DBW $58 \times$ DBW 17 (34.19), MP $1236 \times$ PBW 550 (25.88), PBW $550 \times$ PBW 590 (24.02), PBW $550 \times$ HD 26876 (21.19), WH $1094 \times$ PBW 590 (20.94) and MP $1236 \times$ WH 1094 (20.61), exhibited more than 20% heterosis for yield and also for major yield component traits. These crosses may be exploited for heterosis breeding programme. Since these crosses involved high \times low or high \times average or average \times average or average \times low or low \times low gca value of parent and significant sca for indicated involved of non additive gene action and response of dominance and dominance \times dominance type gene effect. A high heterotic result for yield might be obtained by exploiting these individual cross for developing hybrids through heterosis breeding programme. On the other hand, crosses PBW550 \times HD2687, WH1094 \times RAJ3765, PBW550 \times PBW590, PBW590 \times DBW58, PBW550 \times DBW58 and PBW550 \times DBW17 were common for gluten content, ash content and grain yield per plant and were graded for low phenol reaction. These cross combination may be exploited through heterosis breeding programme for improvement in yield along with quality traits.
Out of these 11 crosses, the cross PBW $550 \times$ PBW 373 and MP $1236 \times$ PBW 373 which showed significant sca effect with good per se performance for grain yield may be used in cross breeding programme and might be expected to give transgressive segregants in F_{2} as these two crosses are having the parents with low x high and high x high gca effect. On the other hand crosses PBW550 \times PBW373, MP1236 \times PBW373, WH1094 \times PBW590, MP1236 \times PBW550 and RAJ3765 \times DBW58 with good per se performance and significant gca effect were common for gluten content, ash content and grain yield per plant. These crosses also showed light colouration on grains when tested with phenol solution (1%). Hence these crosses may be exploited for developing hybrid/genotypes with better yield and quality including chapati quality.
Out of 45 crosses 20 crosses showed significant heterobeltiosis (superiority over better parent) more than 11%, for grain yield.
Table 2: Twenty crosses showing maximum heterosis over better parents for grain yield per plant in spring wheat.

Crosses	Heterosis (\%)	SCA effect	GCA effe P_{1}		Per se F_{1}	BP	Other character exhibiting significant heterosis in desirable direction.
DBW $58 \times$ DBW 17	34.19**	3.93 *	-0.84**	-0.97^{*}	22.63	16.86	Days to maturity**, Number of productive tillers/plant**, Plant height**, Biological yield/plant**
MP $1236 \times$ PBW 550	25.88**	1.79**	0.34	-0.11	22.53	17.90	Number of productive tillers/plant**, Plant height**, Flag leaf area**, Spike length** Biological yield/plant**
PBW $550 \times$ PBW 590	24.02**	1.07	-0.11	-0.31	21.17	17.06	Days to 50 \% flowering**, Number of productive tillers/plant**, Plant height **, Harvest index*, Ash content**, Gluten content**
PBW $550 \times$ HD 2687	21.19**	0.58	-0.11	-1.36**	19.63	16.20	Days to 50 \% flowering**, Days to maturity**, Plant height**, Flag leaf area**, Biological yield/plant**, Harvest index*, Ash content**, Phenol colour reaction
WH $1094 \times$ PBW 590	20.97**	2.19**	0.10	-0.31	22.50	18.60	Plant height*, Number of productive tillers/plant*, Biological yield/plant**
PBW $590 \times$ WH 711	20.70**	1.99**	-0.31	-1.60**	20.60	17.06	Days to 50 \% flowering**, Plant height**, Harvest index**
MP $1236 \times$ WH 1094	20.61**	1.48*	0.34	0.10	22.43	18.60	Days to 50 \% flowering**, Plant height**, Number of productive tillers/plant**, Spike length*, Biological yield/plant**
PBW $550 \times$ WH 711	18.96**	1.05	-0.11	1.60**	19.87	16.70	Days to 50 \% flowering**, Plant height**, Flag leaf area**, Biological yield/ plant*, Harvest inde x *
PBW $550 \times$ DBW 58	16.57**	-0.10	-0.11	-0.84**	19.47	16.70	Days to 50 \% flowering**, Days to maturity**, Plant height**, Spike length **, Ash content**
HD $2687 \times$ WH 711	14.77*	1.61*	-1.36**	-1.60**	19.17	16.70	Plant height**, Number of productive tillers/ plant**, Grains/spike** Biological yield/plant **
MP $1236 \times$ WH 711	14.71**	1.28	0.34	-1.60**	20.53	17.90	Days to 50 \% flowering**, Days to maturity**, Plant height**, Flag leaf area**, Harvest index**
HD $2687 \times$ DBW 17	14.43*	1.11	-1.36**	-0.97**	19.30	16.86	Days to maturity**, Number of productive tillers/plant**, Plant height**
PBW $550 \times$ DBW 17	14.23*	-0.17	0.11	-0.97**	19.27	16.86	Days to 50 \% flowering**, Days to maturity**, Plant height**, Flag leaf area**, Harvest index*, Gluten content**
PBW $590 \times$ DBW 58	13.87*	0.07	-0.31	-0.84**	19.43	17.06	Plant height**, Spikelelets/ spike**, Ash content*, Gluten content**
PBW $590 \times$ HD 2687	13.28*	0.49	-0.31	-1.36**	19.33	17.06	Days to 50 \% flowering**, Flag leaf area**, Harvest index *
DBW $58 \times$ HD 2687	12.57*	0.48	-0.84**	-1.36**	18.80	16.70	Days to 50 \% flowering**, Number of productive tillers/plant**, Plant height**, Biological yield/plant*
MP $1236 \times$ DBW 17	12.48*	0.25	0.34	-0.97**	20.13	17.70	Days to 50 \% flowering**, Plant height **, Harvest index**
PBW $550 \times$ WH 1094	12.37*	0.39	-0.11	0.10	20.90	18.60	Days to 50 \% flowering**, Days to maturity**, Plant height**,
WH $1094 \times$ DBW 58	11.83*	1.02	0.10	-0.84**	20.80	18.60	Days to 50 \% flowering*, Number of productive tiller/ plant*, Plant height **, Biological yield/plant*
MP $1236 \times$ DBW 58	11.55*	-0.05	0.34	-0.84**	19.97	17.90	Plant height**, Spike length*

Table 3: Crosses showing significant and high \% of heterosis for gluten content (\%) in wheat

Crosses	Heterosis (\%)	SCA effect	GCA effects		Desirable heterosis in other component traits
			P_{1}	P_{2}	
WH1094 \times HD2687	7.38**	0.03	0.07*	0.15*	Days to 50\% flowering**, number of productive tillers/plant* and plant height**
PBW550 \times DBW17	7.31**	0.64**	-0.26**	0.08*	Days to 50% flowering**, days to maturity**, plant height**, flag leaf area, grain yield/plant*and harvest index**
PBW590 \times DBW58	6.83**	0.35**	0.01	-0.02	Plant height**, spikelets per spike, grain yield/plant and ash content
PBW550 \times PBW590	5.53**	0.48**	-0.26**	0.01	Days to 50% flowering**, number of productive tillers/plant*, Harvest inde $\times{ }^{*}$, plant height**, grain yield/plant*, harvest index ** and ash content
WH1094 \times RAJ3765	4.77**	0.22*	0.07*	0.00	Days to 50\% flowering*
WH1094 \times PBW373	3.88*	0.16	0.07*	-0.05	Days to 50\% flowering*, days to maturity* and plant height**

Table 4: Heterosis over better parent for ash content in relation to other parameters and components traits.

Crosses	Heterosis (\%)	SCA effect	GCA effects		Desirable heterosis in other component traits
			P_{1}	P_{2}	
PBW550 \times PBW590	32.90**	0.173**	0.032	-0.036*	Days to 50\% flowering**, number of productive tillers/plant*, plant height **, grain yield/plant**, harvest index** and gluten content**
PBW550 \times DBW58	19.37**	0.129*	0.032	-0.058**	Days to 50% flowering**, days to maturity**, plant height**, spike length**and grain yield/plant**.
PBW550 \times HD2687	14.89**	0.231**	0.032	-0.003	Days to 50% flowering**, days to maturity**, plant height**, flag leaf area**, biological yield per plant*, grain yield/plant** and harvest index*.
PBW550 \times RAJ3765	14.78*	0.110	0.032	-0.025	Days to maturity**, plant height** and spike length*.
PBW550 \times PBW373	14.10*	0.151**	0.032	0.030	Days to 50% flowering**, days to maturity**, plant height**, flag leaf area** and biological yield/plant**.
PBW590 \times RAJ3765	13.16*	0.153**	-0.036*	-0.025	Plant height** and spikelets per spike**.
PBW590 \times DBW58	13.08*	0.110	-0.036*	-0.058**	Plant height**, spikelets per spike**, grain yield /plant * and gluten conten**.

Among these, crosses DBW $58 \times$ DBW 17 (34.19), MP 1236 \times PBW 550 (25.88), PBW $550 \times$ PBW 590 (24.02), PBW $550 \times$ HD 2687 (21.19), WH $1094 \times$ PBW 590 (20.97) and MP $1236 \times$ WH 1094 (20.61), showed more than 20% heterobeltiosis over better parents. These individual crosses may be exploited in heterosis breeding programme for improvement in yield. However, it may be crosses PBW550 \times HD2687, WH1094 \times RAJ3765, PBW550 \times PBW590, PBW590 \times DBW58, PBW550 \times DBW58 and PBW550 \times DBW17 were common for gluten content, ash content, phenol colour reaction and grain yield per plant which can be exploited for hybrid development for better grain yield and quality. Out of these 11 crosses, the cross PBW $550 \times$ PBW 373 and MP $1236 \times$ PBW 373 which showed significant sca effect with good per se performance for grain yield may be used in cross breeding programme and might be expected to give transgressive segregants in F_{2} as these two crosses are having the parents with low \times high and high \times high gca effect.

REFERENCES

Abdel-Nour, N. A. R. 2005. Heterosis and combining ability of a five parents diallel of bread wheat. Egyptian J. Agric. Res. 83(4): 17111723.

Abrol, Y. P. and Uprety, D. C. 1970. Studies on darkening of whole wheat meal dough. Curr. Sci. 40: 421-422.
Ashutosh, K., Mishra, V. K., Vyas, R. P. and Singh, V. 2011. Heterosis and combining ability analysis in bread wheat (Triticum aestivum L.).

J. PI. Breeding and Crop. Sci. 3(10): 209-217.

Chowdhry, M. A., Muhammad-Sajad and Ashraf, M. I. 2005. Analysis on combining ability of metric traits in bread wheat, (Triticum aestivum L.). J. Agric. Res. 45(1): 11-17.

Desale, C. S. and Mehta, D. R. 2013. Heterosis and combining ability analysis for grain yield and quality traits in bread wheat (Triticum aestivum L.). Electronic J. PI. Breed. 4(3): 1205-1213.
Devi, E. L., Swati, Goel, P., Singh, M. and Jaiswal, J. P. 2013. Heterosis studies for yield and yield contributing traits in bread wheat (Triticum aestivum L.). The Bioscan. 8(3): 905-909
Ghulam, H., Mohammad, F., Khalil, I. H. and Raziuddin 2006. Heterosis and heterobeltiosis studies for morphological traits in bread wheat. Sarhad J.Agric. 22(1): 51-54.
Gite, V. D., Mali, A. R., Idhol, B. D. and Bagwan, J. H. 2014. Estimation of heterosis for yield and some yield components in bread wheat (Triticum aestivum L.). The Bioscan. 9(2): 767-770.
Gowda, M., Kling, C., Wurschum, T., Liu, W., Maurer, H. P., Hahn, V. and Reif, J. C. 2010. Hybrid Breeding in Durum Wheat: Heterosis and Combining Ability. Crop Sci. 50: 2224-2230.
Hassan, E. E. and Saad, A. M. M. 1996. Combining ability, heterosis, correlation and multiple lines regression for yield and its contributing characters in some bread wheat genotypes. Annals of Agric. Sc. 34(2): 487-499.
Jahanzeb-Farooq and Ihsan-Khaliq 2004. Estimation of heterosis and heterobeltiosis of some quantitative characters in bread wheat crosses. Asian J. PI. Sc. 3(4): 508-511.
Kamaluddin, A. A. 2011. Heterosis studies for yield and its component traits in spring wheat (Triticum aestivum L. em Thell). Progressive Agric. 11(2): 298-304.

Karnwal, M. K. Malik, S. K. and Jaiswal, J. P. 2011. Combining ability studies for grain yield and its contributing traits over different environmental conditions in bread wheat (Triticum aestivum L. em. Thell). Pantnagar J. Res. 9(1): 35-40.
Krystkowiak, K. Admski, T. Surma, M. and Kaczmarek, Z. 2009. Relationship between phenotypic and genetic diversity of parental genotypes and the specific combining ability and heterosis effects in wheat (Triticum aestivum L.). Euphytica. 165(3): 419-434.

Kumar, A. A. and Raghavaiah, P. 2005. Heterosis for quality and yield traits in wheat (Triticum aestivum L.). Crop Res. 30(1): 50-53.
Muhammad, A., Javed, A., Hussain, M., Muhammad, M. I. and Waseem, S. 2010. Heterosis and heterobeltiosis for grain yield improvement in bread wheat. J. Agric. Res. 48(1): 15-23.
Panse and Sukhatme. 1961. Statistical methods for agricultural workers. ICAR, New Delhi. pp. 228-232.
Panse, V. G. and Sukhatme, P. V. 1961. Statistical methods for
agricultural workers. ICAR, New Delhi, p. 347.
Singh, M. N., Sharma, P. K., Tyagi, B. S. and Singh, G. 2014. Heterosis for Yield Component Traits and Protein Content in Bread Wheat under Normal and Heat-stress Environment. Cereal Res. Communications. 42(1): 151-162.

Singh, H., Sharma, S. N., Sain, R. S. and Sastry, E. V. D. 2004. Heterosis studies for yield and its components in bread wheat under normal and late-sowing conditions. SABRAO J. Breed. and Genet. 6(1): 1-11.
Singh, M. K. and Sharma, P. K. 2012. Relationship of heterosis for protein content with yield component trait(s) under normal/heatstress environment in spring wheat. Crop Impro. 39(1): 8-17.

Singh, M., Devi, E. L., Aglawe, S., Kousar, N. and Behera, C. 2013. Estimation of heterosis in diffent crosses of bread wheat (Triticum aestivum L.). The Bioscan. 8(4): 1393-1401.

